张庆辉

所属研究所、院系: 
数据科学研究所
职称: 
副教授
E-mail: 
zhangqh6@mail.sysu.edu.cn
办公地点: 
广州大学城外环东路132号数据科学与计算机学院A123
教师简介: 

张庆辉: 副教授,博士生导师,广东省自然科学杰出青年基金获得者

研究领域: 

有限元法、广义有限元法、计算力学与仿真、高性能多尺度并行算法、无网格法

教育背景: 

2006/09–2009/07,中山大学,数学与计算科学学院,博士

2007/10–2009/02,美国Syracuse大学,数学系,联合培养博士

1999/09–2006/07,北京师范大学,数学科学学院,学士、硕士

工作经历: 

2015/08–至今,中山大学,数据科学与计算机学院,副教授

2012/06–2015/07,中山大学,数学与计算科学学院,副教授

2009/07–2012/06,中山大学,数学与计算科学学院,讲师

2010/03–2011/03,香港大学,工学院机械工程系,博士后

科研项目: 

[1]  主持广东省自然科学杰出青年基金项目,项目编号:2015A030306016,项目名称:基于高性能计算机的广义有限元并行算法及力学软件研发,在研;

[2] 主持国家自然科学基金面上项目,项目编号: 11471353,项目名称:稳定广义有限元法的研究与若干典型工程应用,在研;

[3] 联合主持国家自然科学基金海外及港澳学者合作研究项目11628104,奇性问题的渐进四边形和六面体有限元法及应用,在研;

[4] 主持国家自然科学基金青年基金项目,项目编号: 11001282,项目名称:无网格方法中关键计算问题的算法、理论及其在计算力学中的应用,已结题;

[5] 主持广东省自然科学基金项目,项目编号: S2011040003030, 项目名称:Helmholtz方程的波动基有限元法,已结题。

代表性论著: 

[18] Q. Zhang, I. Babuska, and U. Banerjee, Stable generalized finite element methods (SGFEM) for interface problems with singularities, in preparation.

[17] H. Li and Q. Zhang(corresponding), Optimal quadrilateral finite elements on polygonal domains, Journal of Scientific Computing, 70: 60-84, 2017.

[16] Q. Zhang, I. Babuska, and U. Banerjee, Robustness in stable generalized finite element methods (SGFEM) applied to Poisson problems with crack singularities, Computer Methods in Applied Mechanics and Engineering,  311: 476-502, 2016.

[15] Bin Wu and Q. Zhang(corresponding), Fast Multiscale Regularization Methods for High-Order Numerical Differentiations, IMA Numerical Analysis, 36: 1432-1451, 2016.

[14] G. Jin, H. Li, Q. Zhang, and Q. Zou, linear and quadratic finite volume methods on triangular meshes for elliptic equations with singular solutions, International Journal of Numerical Analysis and Modeling, 13: 244-264, 2016.

[13] Q. Zhang, I. Babuska and U. Banerjee, High order stable generalized finite element methods, Numerische Mathematik, 128: 1-29, 2014.

[12] Q. Zhang, Quadrature for meshless Nitsche’s methods, Numerical Methods for Partial Differential Equations, 30: 265-288, 2014.

[11] Q. Zhang and Q. Zou , A class of finite volume schemes of arbitrary order on non-uniform meshes, Numerical Methods for Partial Differential Equations, 30: 1614-1632, 2014.

[10] Q. Zhang and K. Sze, Hybrid linear and quadratic finite element models for 3D Helmholtz problem, Acta Mechanica Solid Sinica. 26: 603-618, 2013.

[9] L. Sun, G. Yang, and Q. Zhang(corresponding), Numerical integration with Constraints for meshless local Petrov-Galerkin methods, CMES: Computer Modeling in Engineering & Sciences, 95: 235-258, 2013.

[8] Q. Zhang and U. Banerjee, Numerical integration in Galerkin meshless methods, applied to elliptic Neumann problem with non-constant coefficients, Advances in Computational Mathematics, 37: 453-492, 2012.

[7] H. Zhang, Y. Xu, and Q. Zhang, Refinement of vector-valued reproducing kernels, Journal of Machine Learning Research, 13: 91-136, 2012.

[6] K. Sze. Q. Zhang, and G. Liu, Hybrid quadrilateral finite element models for axial symmetric Helmholtz problem, Finite Elements in Analysis and Design, 52: 1-10, 2012.

[5] Q. Zhang, Theoretical analysis of numerical integration in Galerkin meshless methods, BIT Numerical mathematics, 51: 459-480, 2011.

[4] H. Zhang and Q. Zhang(corresponding), Sparse discretization matrices for Volterra integral operators with applications to numerical differentiation, Journal of Integral Equations and Applications, 23: 137-156, 2011.

[3] K. Sze, Q. Zhang, and G. Liu, Multi-field three-node triangular finite element models for Helmholtz problem, Journal of Computational Acoustics, 19: 317-334, 2011.

[2] G. Liu, Q. Zhang, and K. Sze, Spherical-wave based triangular finite element models for axial symmetric Helmholtz problems, Finite Elements in Analysis and Design, 47: 342-350, 2011.

[1] I. Babuska, U. Banerjee, J. Osborn, and Q. Zhang, Effect of numerical integration on meshless methods, Comput. Methods Appl. Mech. Engrg., 198: 2886-2897, 2009.